
How to
Make Mistakes
in Python

Mike Pirnat

Mike Pirnat

How to Make Mistakes
in Python

978-1-491-93447-0

[LSI]

How to Make Mistakes in Python
by Mike Pirnat

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Kristen Brown
Copyeditor: Sonia Saruba

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-09-25: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. How to Make Mis‐
takes in Python, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

To my daughter, Claire, who enables me to see the world anew, and to
my wife, Elizabeth, partner in the adventure of life.

Table of Contents

Introduction. xi

1. Setup. 1
Polluting the System Python 1
Using the Default REPL 4

2. Silly Things. 7
Forgetting to Return a Value 7
Misspellings 9
Mixing Up Def and Class 10

3. Style. 13
Hungarian Notation 13
PEP-8 Violations 15
Bad Naming 17
Inscrutable Lambdas 19
Incomprehensible Comprehensions 20

4. Structure. 23
Pathological If/Elif Blocks 23
Unnecessary Getters and Setters 25
Getting Wrapped Up in Decorators 27
Breaking the Law of Demeter 29
Overusing Private Attributes 31
God Objects and God Methods 33

ix

Global State 36

5. Surprises. 41
Importing Everything 41
Overbroadly Silencing Exceptions 43
Reinventing the Wheel 46
Mutable Keyword Argument Defaults 48
Overeager Code 50
Poisoning Persistent State 56
Assuming Logging Is Unnecessary 59
Assuming Tests Are Unnecessary 62

6. Further Resources. 65
Philosophy 65
Tools 66

x | Table of Contents

Introduction

To err is human; to really foul things up requires a computer.
—Bill Vaughan

I started programming with Python in 2000, at the very tail end of
The Bubble. In that time, I’ve…done things. Things I’m not proud
of. Some of them simple, some of them profound, all with good
intentions. Mistakes, as they say, have been made. Some have been
costly, many of them embarrassing. By talking about them, by inves‐
tigating them, by peeling them back layer by layer, I hope to save
you some of the toe-stubbing and face-palming that I’ve caused
myself.

As I’ve reflected on the kinds of errors I’ve made as a Python pro‐
grammer, I’ve observed that they fall more or less into the categories
that are presented here:

Setup
How an incautiously prepared environment has hampered me.

Silly things
The trivial mistakes that waste a disproportionate amount of my
energy.

Style
Poor stylistic decisions that impede readability.

Structure
Assembling code in ways that make change more difficult.

xi

Surprises
Those sudden shocking mysteries that only time can turn from
OMG to LOL.

There are a couple of quick things that should be addressed before
we get started.

First, this work does not aim to be an exhaustive reference on poten‐
tial programming pitfalls—it would have to be much, much longer,
and would probably never be complete—but strives instead to be a
meaningful tour of the “greatest hits” of my sins.

My experiences are largely based on working with real-world but
closed-source code; though authentic examples are used where pos‐
sible, code samples that appear here may be abstracted and hyper‐
bolized for effect, with variable names changed to protect the inno‐
cent. They may also refer to undefined variables or functions. Code
samples make liberal use of the ellipsis (…) to gloss over reams of
code that would otherwise obscure the point of the discussion.
Examples from real-world code may contain more flaws than those
under direct examination.

Due to formatting constraints, some sample code that’s described as
“one line” may appear on more than one line; I humbly ask the use
of your imagination in such cases.

Code examples in this book are written for Python 2, though the
concepts under consideration are relevant to Python 3 and likely far
beyond.

Thanks are due to Heather Scherer, who coordinated this project; to
Leonardo Alemeida, Allen Downey, and Stuart Williams, who pro‐
vided valuable feedback; to Kristen Brown and Sonia Saruba, who
helped tidy everything up; and especially to editor Meghan Blanch‐
ette, who picked my weird idea over all of the safe ones and encour‐
aged me to run with it.

Finally, though the material discussed here is rooted in my profes‐
sional life, it should not be construed as representing the current
state of the applications I work with. Rather, it’s drawn from over 15
years (an eternity on the web!) and much has changed in that time.
I’m deeply grateful to my workplace for the opportunity to make
mistakes, to grow as a programmer, and to share what I’ve learned
along the way.

xii | Introduction

With any luck, after reading this you will be in a position to make a
more interesting caliber of mistake: with an awareness of what can
go wrong, and how to avoid it, you will be freed to make the excit‐
ing, messy, significant sorts of mistakes that push the art of pro‐
gramming, or the domain of your work, forward.

I’m eager to see what kind of trouble you’ll get up to.

Introduction | xiii

CHAPTER 1

Setup

Mise-en-place is the religion of all good line cooks…
The universe is in order when your station is set up the way you like it:

you know where to find everything with your eyes closed, everything you
need during the course of the shift is at the ready at arm’s reach,

your defenses are deployed.
—Anthony Bourdain

There are a couple of ways I’ve gotten off on the wrong foot by not
starting a project with the right tooling, resulting in lost time and
plenty of frustration. In particular, I’ve made a proper hash of sev‐
eral computers by installing packages willy-nilly, rendering my sys‐
tem Python environment a toxic wasteland, and I’ve continued to
use the default Python shell even though better alternatives are
available. Modest up-front investments of time and effort to avoid
these issues will pay huge dividends over your career as a Pytho‐
nista.

Polluting the System Python
One of Python’s great strengths is the vibrant community of devel‐
opers producing useful third-party packages that you can quickly
and easily install. But it’s not a good idea to just go wild installing
everything that looks interesting, because you can quickly end up
with a tangled mess where nothing works right.

By default, when you pip install (or in days of yore,
easy_install) a package, it goes into your computer’s system-wide

1

site-packages directory. Any time you fire up a Python shell or a
Python program, you’ll be able to import and use that package.

That may feel okay at first, but once you start developing or working
with multiple projects on that computer, you’re going to eventually
have conflicts over package dependencies. Suppose project P1
depends on version 1.0 of library L, and project P2 uses version 4.2
of library L. If both projects have to be developed or deployed on the
same machine, you’re practically guaranteed to have a bad day due
to changes to the library’s interface or behavior; if both projects use
the same site-packages, they cannot coexist! Even worse, on many
Linux distributions, important system tooling is written in Python,
so getting into this dependency management hell means you can
break critical pieces of your OS.

The solution for this is to use so-called virtual environments. When
you create a virtual environment (or “virtual env”), you have a sepa‐
rate Python environment outside of the system Python: the virtual
environment has its own site-packages directory, but shares the
standard library and whatever Python binary you pointed it at dur‐
ing creation. (You can even have some virtual environments using
Python 2 and others using Python 3, if that’s what you need!)

For Python 2, you’ll need to install virtualenv by running pip
install virtualenv, while Python 3 now includes the same func‐
tionality out-of-the-box.

To create a virtual environment in a new directory, all you need to
do is run one command, though it will vary slightly based on your
choice of OS (Unix-like versus Windows) and Python version (2 or
3). For Python 2, you’ll use:

virtualenv <directory_name>

while for Python 3, on Unix-like systems it’s:

pyvenv <directory_name>

and for Python 3 on Windows:

pyvenv.py <directory_name>

2 | Chapter 1: Setup

Windows users will also need to adjust their PATH to
include the location of their system Python and its
scripts; this procedure varies slightly between versions
of Windows, and the exact setting depends on the ver‐
sion of Python. For a standard installation of Python
3.4, for example, the PATH should include:
C:\Python34\;C:\Python34\Scripts\;C:
\Python34\Tools\Scripts

This creates a new directory with everything the virtual environ‐
ment needs: lib (Lib on Windows) and include subdirectories for
supporting library files, and a bin subdirectory (Scripts on Win‐
dows) with scripts to manage the virtual environment and a sym‐
bolic link to the appropriate Python binary. It also installs the pip
and setuptools modules in the virtual environment so that you can
easily install additional packages.

Once the virtual environment has been created, you’ll need to navi‐
gate into that directory and “activate” the virtual environment by
running a small shell script. This script tweaks the environment
variables necessary to use the virtual environment’s Python and
site-packages. If you use the Bash shell, you’ll run:

source bin/activate

Windows users will run:

Scripts\activate.bat

Equivalents are also provided for the Csh and Fish shells on Unix-
like systems, as well as PowerShell on Windows. Once activated, the
virtual environment is isolated from your system Python—any
packages you install are independent from the system Python as well
as from other virtual environments.

When you are done working in that virtual environment, the
deactivate command will revert to using the default Python again.

As you might guess, I used to think that all this virtual environment
stuff was too many moving parts, way too complicated, and I would
never need to use it. After causing myself significant amounts of
pain, I’ve changed my tune. Installing virtualenv for working with
Python 2 code is now one of the first things I do on a new computer.

Polluting the System Python | 3

If you have more advanced needs and find that pip
and virtualenv don’t quite cut it for you, you may
want to consider Conda as an alternative for managing
packages and environments. (I haven’t needed it; your
mileage may vary.)

Using the Default REPL
When I started with Python, one of the first features I fell in love
with was the interactive shell, or REPL (short for Read Evaluate
Print Loop). By just firing up an interactive shell, I could explore
APIs, test ideas, and sketch out solutions, without the overhead of
having a larger program in progress. Its immediacy reminded me
fondly of my first programming experiences on the Apple II. Nearly
16 years later, I still reach for that same Python shell when I want to
try something out…which is a shame, because there are far better
alternatives that I should be using instead.

The most notable of these are IPython and the browser-based
Jupyter Notebook (formerly known as IPython Notebook), which
have spurred a revolution in the scientific computing community.
The powerful IPython shell offers features like tab completion, easy
and humane ways to explore objects, an integrated debugger, and
the ability to easily review and edit the history you’ve executed. The
Notebook takes the shell even further, providing a compelling web
browser experience that can easily combine code, prose, and dia‐
grams, and which enables low-friction distribution and sharing of
code and data.

The plain old Python shell is an okay starting place, and you can get
a lot done with it, as long as you don’t make any mistakes. My expe‐
riences tend to look something like this:

>>> class Foo(object):
... def __init__(self, x):
... self.x = x
... def bar(self):
... retrun self.x
 File "<stdin>", line 5
 retrun self.x
 ^
SyntaxError: invalid syntax

Okay, I can fix that without retyping everything; I just need to go
back into history with the up arrow, so that’s…

4 | Chapter 1: Setup

http://conda.pydata.org/
http://ipython.org
https://jupyter.org/

Up arrow. Up. Up. Up. Up. Enter.

Up. Up. Up. Up. Up. Enter. Up. Up. Up. Up. Up. Enter. Up. Up. Up.
Up. Up. Enter.

Up. Up. Up. Up. Up. Enter. Then I get the same SyntaxError
because I got into a rhythm and pressed Enter without fixing the
error first. Whoops!

Then I repeat this cycle several times, each iteration punctuated with
increasingly sour cursing.

Eventually I’ll get it right, then realize I need to add some more
things to the __init__, and have to re-create the entire class again,
and then again, and again, and oh, the regrets I will feel for having
reached for the wrong tool out of my old, hard-to-shed habits. If I’d
been working with the Jupyter Notebook, I’d just change the error
directly in the cell containing the code, without any up-arrow she‐
nanigans, and be on my way in seconds (see Figure 1-1).

Figure 1-1. The Jupyter Notebook gives your browser super powers!

Using the Default REPL | 5

It takes just a little bit of extra effort and forethought to install and
learn your way around one of these more sophisticated REPLs, but
the sooner you do, the happier you’ll be.

6 | Chapter 1: Setup

CHAPTER 2

Silly Things

Oops! I did it again.
—Britney Spears

There’s a whole category of just plain silly mistakes, unrelated to
poor choices or good intentions gone wrong, the kind of strangely
simple things that I do over and over again, usually without even
being aware of it. These are the mistakes that burn time, that have
me chasing problems up and down my code before I realize my triv‐
ial yet exasperating folly, the sorts of things that I wish I’d thought to
check for an hour ago. In this chapter, we’ll look at the three silly
errors that I commit most frequently.

Forgetting to Return a Value
I’m fairly certain that a majority of my hours spent debugging mys‐
terious problems were due to this one simple mistake: forgetting to
return a value from a function. Without an explicit return, Python
generously supplies a result of None. This is fine, and beautiful, and
Pythonic, but it’s also one of my chief sources of professional embar‐
rassment. This usually happens when I’m moving too fast (and
probably being lazy about writing tests)—I focus so much on getting
to the answer that returning it somehow slips my mind.

I’m primarily a web guy, and when I make this mistake, it’s usually
deep down in the stack, in the dark alleyways of the layer of code
that shovels data into and out of the database. It’s easy to get distrac‐
ted by crafting just the right join, making sure to use the best

7

indexes, getting the database query just so, because that’s the fun
part.

Here’s an example fresh from a recent side project where I did this
yet again. This function does all the hard work of querying for vot‐
ers, optionally restricting the results to voters who cast ballots in
some date range:

def get_recent_voters(self, start_date=None, end_date=None):
 query = self.session.query(Voter).\
 join(Ballot).\
 filter(Voter.status.in_(['A', 'P']))
 if start_date:
 query.filter(Ballot.election_date >= start_date)
 if end_date:
 query.filter(Ballot.election_date <= end_date)
 query.group_by(Voter.id)
 voters = query.all()

Meanwhile, three or four levels up the stack, some code that was
expecting to iterate over a list of Voter objects vomits catastrophi‐
cally when it gets a None instead. Now, if I’ve been good about writ‐
ing tests, and I’ve only just written this function, I find out about
this error right away, and fixing it is fairly painless. But if I’ve been
In The Zone for several hours, or it’s been a day or two between
writing the function and getting a chance to exercise it, then the
resulting AttributeError or TypeError can be quite baffling. I
might have made that mistake hundreds or even thousands of lines
ago, and now there’s so much of it that looks correct. My brain
knows what it meant to write, and that can prevent me from finding
the error as quickly as I’d like.

This can be even worse when the function is expected to sometimes
return a None, or if its result is tested for truthiness. In this case, we
don’t even get one of those confusing exceptions; instead the logic
just doesn’t work quite right, or the calling code behaves as if there
were no results, even though we know there should be. Debugging
these cases can be exquisitely painful and time-consuming, and
there’s a strong risk that these errors might not be caught until much
later in the life cycle of the code.

I’ve started to combat this tendency by cultivating the habit of writ‐
ing the return immediately after defining the function, making a
second pass to write its core behavior:

8 | Chapter 2: Silly Things

def get_recent_voters(self, start_date=None, end_date=None):
 voters = []
 # TODO: go get the data, sillycakes
 return voters

Yes, I like to sass myself in comments; it motivates me to turn TODO
items into working code so that no one has to read my twisted inner
monologue.

Misspellings
One of the top entries on my list of superpowers is my uncanny abil‐
ity to mistype variable or function names when I’m programming.
Like my forgetfulness about returning things from functions, I
encounter this the most when I’ve been In The Zone for a couple of
hours and have been slacking at writing or running tests along the
way. There’s nothing quite like a pile of NameErrors and
AttributeErrors to deflate one’s ego at the end of what seemed like
a glorious triumph of programming excellence.

Transposition is especially vexing because it’s hard to see what I’ve
done wrong. I know what it’s supposed to say, so that’s all I can see.
Worse, if the flaw isn’t exposed by tests, there’s a good chance it will
escape unscathed from code review. Peers reviewing code can skip
right over it because they also know what I’m getting at and assume
(often too generously) I know what I’m doing.

My fingers seem to have certain favorites that they like to torment
me with. Any end-to-end tests I write against our REST APIs aren’t
complete without at least half a dozen instances of respones when I
mean response. I may want to add a metadata element to a JSON
payload, but if it’s getting close to lunch time, my rebellious pha‐
langes invariably substitute meatdata. Some days I just give in and
deliberately use slef everywhere instead of self since it seems like
my fingers won’t cooperate anyway.

Misspelling is particularly maddening when it occurs in a variable
assignment inside a conditional block like an if:

def fizzbuzz(number):
 output = str(number)
 if number % 3 == 0:
 putput = "fizz"
 ...
 return output

Misspellings | 9

The code doesn’t blow up, no exceptions are raised—it just doesn’t
work right, and it is utterly exasperating to debug.

This issue, of course, is largely attributable to my old-school, artisi‐
nal coding environment, by which I mean I’ve been too lazy to
invest in a proper editor with auto-completion. On the other hand,
I’ve gotten good at typing xp in Vim to fix transposed characters.

I have also been really late to the Pylint party. Pylint is a code analy‐
sis tool that examines your code for various “bad smells.” It will
warn you about quite a lot of potential problems, can be tuned to
your needs (by default, it is rather talkative, and its output should be
taken with a grain of salt), and it will even assign a numeric score
based on the severity and number of its complaints, so you can
gamify improving your code. Pylint would definitely squawk about
undefined variables (like when I try to examine respones.headers)
and unused variables (like when I accidentally assign to putput
instead of output), so it’s going to save you time on these silly bug
hunts even though it may bruise your ego.

So, a few suggestions:

• Pick an editor that supports auto-completion, and use it.
• Write tests early and run them frequently.
• Use Pylint. It will hurt your feelings, but that is its job.

Mixing Up Def and Class
Sometimes I’m working head-down, hammering away at some code
for a couple of hours, deep in a trance-like flow state, blasting out
class after class like nobody’s business. A few hundred lines might
have emerged from my fingertips since my last conscious thought,
and I am ready to run the tests that prove the worth and wonder‐
ment of my mighty deeds.

And then I’m baffled when something like this…

class SuperAmazingClass(object):

 def __init__(self, arg1, arg2):
 self.attr1 = arg1
 self.attr2 = arg2

 def be_excellent(to_whom='each other'):

10 | Chapter 2: Silly Things

http://www.pylint.org
https://wiki.python.org/moin/PythonEditors

 ...

 # many more lines...

def test_being_excellent():
 instance = SuperAmazingClass(42, 2112)
 assert instance.be_excellent(...)

…throws a traceback like this:

TypeError: SuperAmazingClass() takes exactly 1 argument (2
given)

Wait, what?

My reverie is over, my flow is gone, and now I have to sort out what
I’ve done to myself, which can take a couple of minutes when I’ve
been startled by something that I assumed should Just Work.

When this happens, it means that I only thought that I wrote the
code above. Instead, my careless muscle memory has betrayed me,
and I’ve really written this:

def SuperAmazingClass(object):

 def __init__(self, arg1, arg2):
 ...

Python is perfectly content to define functions within other func‐
tions; this is, after all, how we can have fun toys like closures (where
we return a “customized” function that remembers its enclosing
scope). But it also means that it won’t bark at us when we mean to
write a class but end up accidentally definining a set of nested func‐
tions.

The error is even more confusing if the __init__ has just one argu‐
ment. Instead of the TypeError, we end up with:

AttributeError: 'NoneType' object has no attribute 'be_excel-
lent'

In this case, our “class” was called just fine, did nothing of value, and
implicitly returned None. It may seem obvious in this contrived con‐
text, but in the thick of debugging reams of production code, it can
be just plain weird.

Above all, be on your guard. Trust no one—least of all yourself!

Mixing Up Def and Class | 11

CHAPTER 3

Style

Okay, so ten out of ten for style, but minus several million
for good thinking, yeah?

—Zaphod Beeblebrox

In this chapter, we’re going to take a look at five ways I’ve hurt
myself with bad style. These are the sorts of things that can seem like
a good idea at the time, but will make code hard to read and hard to
maintain. They don’t break your programs, but they damage your
ability to work on them.

Hungarian Notation
A great way to lie to yourself about the quality of your code is to use
Hungarian Notation. This is where you prefix each variable name
with a little bit of text to indicate what kind of thing it’s supposed to
be. Like many terrible decisions, it can start out innocently enough:

strFirstName
intYear
blnSignedIn
fltTaxRate
lstProducts
dctParams

Or perhaps we read part of PEP-8 and decided to use underscores
instead, or like suffixes more than prefixes. We could make variables
like these:

str_first_name
products_list

13

https://www.python.org/dev/peps/pep-0008/

The intent here is noble: we’re going to leave a signpost for our
future selves or other developers to indicate our intent. Is it a string?
Put a str on it. An integer? Give it an int. Masters of brevity that
we are, we can even specify lists (lst) and dictionaries (dct).

But soon things start to get silly as we work with more complex val‐
ues. We might conjoin lst and dct to represent a list of dictionaries:

lctResults

When we instantiate a class, we have an object, so obj seems legit:

objMyReallyLongName

But that’s an awfully long name, so as long as we’re throwing out
unneeded characters, why not boost our job security by trimming
that name down even further, to the point that it’s completely mean‐
ingless:

objMRLN

Maybe we don’t know what kind of data we’re going to have:

varValue

Before long, we’re straight-up lying, creating variables like these—a
number that isn’t a number, and a boolean that isn’t a boolean:

strCustomerNumber = "123456789"
blnFoo = "N"

This, in turn, is a gateway to logic either silently failing (a “boolean”
that’s actually a string will always be “truthy” in an if or while) or
throwing mysterious AttributeError exceptions that can be partic‐
ularly difficult to diagnose if you have several of these liars in a sin‐
gle expression (such as when you’re formatting a string, and one of
them is accidentally a None in disguise). It also limits our thinking:
when we read products_list or lstResults, we won’t ever expect
that they might be generators or some other kind of sequence. Our
thoughts are tied to specific types, when we might be better served
by thinking at a higher level of abstraction.

At the best, we make everything a few characters longer and harder
to read; at the worst, we lie to ourselves and introduce frustrating
runtime errors. So when it comes to Hungarian Notation, just say
blnNo!

14 | Chapter 3: Style

PEP-8 Violations
When I was starting out in Python, I picked up some bad habits
from our existing codebase and perpetuated them for a lot longer
than I should have. Several years had passed before I discovered
PEP-8, which suggests a standardized style for writing Python code.
Let’s take a look at a distilled example and examine my sins:

class MyGiganticUglyClass(object):
 def iUsedToWriteJava(self,x,y = 42):
 blnTwoSpacesAreMoreEfficient = 1
 while author.tragicallyConfused():
 print "Three spaces FTW roflbbq!!1!"
 if (new_addition):
 four_spaces_are_best = True
 if (multipleAuthors \
 or peopleDisagree):
 print "tabs! spaces are so mainstream"
 ...
 return ((pain) and (suffering))

Indentation issues: At first I thought three spaces of indenta‐
tion were pretty great, then I realized that two spaces meant I
could pack more code onto a line. Sometimes that’d be mixed
with tabs, while newer, more enlightened additions would use
the recommended four spaces. Mixing tabs and spaces can be
especially dangerous as well, as it can cause logic to fail in inter‐
esting and unexpected ways at runtime, usually at night, always
when you’re on call. Just because it looks like a line is indented
properly to be within a particular block doesn’t mean it actually
is if tabs are involved!

Whitespace issues: I’ve omitted whitespace after commas, yet
added unnecessary whitespace around keyword arguments.
And the whole thing would be more readable with some blank
lines in between the class and function definition, as well as
within the function, to better separate ideas.

Inconsistent case: While mixedCaseNames might be the stan‐
dard practice for functions and variables in other languages
(Java, JavaScript), the Python community prefers
lowercase_with_underscores for enhanced readability.

Hungarian notation: ’nuff said.

PEP-8 Violations | 15

https://www.python.org/dev/peps/pep-0008/

Extraneous parentheses: Parentheses are optional around
expressions, and in some cases may improve readability or help
clarify order of operations, but in this case we don’t need them
when checking a single value in an if block or in the way-too-
complicated return statement.

Extraneous line continuations: If you’re inside a set of paren‐
theses (such as when calling a function or defining a generator
expression), square brackets (defining a list or list comprehen‐
sion), or curly braces (defining a set, dictionary, or comprehen‐
sion), you don’t need the backslash to continue the statement on
the next line.

If we tidied this up a little, it might look better like this:

class MyMorePythonicClass(object):

 def now_i_write_python(self, x, y=42):
 two_spaces_hamper_readability = True

 while author.tragically_confused():
 print "Three spaces? What was I thinking?"

 if new_addition:
 four_spaces_are_best = True

 if (multiple_authors or
 people_disagree):
 print "Mixing tabs and spaces is dangerous!"

 ...

 return sunshine and puppies

At first it might seem like there’s too much whitespace within
this method, but once a given block has more than three or four
lines, or there are more than two or three blocks, it’s really much
more readable.

This is actually short enough to have the whole expression on
one line with no continuation and no parentheses, but then it
wouldn’t illustrate this improved multiline style.

There’s also an appealing foolishness to getting everything lined up
just right:

16 | Chapter 3: Style

from regrets import unfortunate_choices

class AnotherBadHabit(object):

 short_name = 'foo'
 much_longer_name = 'bar'

 def __init__(self, x, y, z):
 self.x = x
 self.y = y
 self.z_is_a_silly_name = z
 self.came_later = 42
 self.mild_disappointment = True
 self.leftover = 'timewaster'
 self.dictionary = {
 'foo' : 'bar',
 'bar' : 'baz',
 'baz' : 'quux',
 }

I did this a lot in my initial years with Python, I think as a reaction
to existing code that I didn’t consider well-formatted or terribly
readable. It seems pleasing at first, but before long, something needs
to be added, or changed, and you’re quickly locked into a spiral of
despair and spend all your time adjusting the internal whitespace of
each line of code. Inevitably, you’re stuck with weird artifacts and
inconsistencies that will haunt your nightmares as well as make lots
of unnecessary noise in your diffs and code reviews.

Don’t do this—it will just drive you crazy.

Bad Naming
At some point I internalized PEP-8’s 80-character line length limit,
but my poor judgment led me to squeeze the most code I could into
a single line by using single-character variables wherever possible:

f.write(string.join(map(lambda
x,y=self.__dicProfiles,z=strPy:"%0.3s %s:
%s:(%s)" % (z,x,y[x][0],y[x]
%[1]),self.__dicProfiles.keys()),'\n')
%+'\n')

Such meaningless variable names lead to code that’s really hard to
read, and people are afraid to clean it up. I have no idea what this
even does anymore!

Bad Naming | 17

Single-character variable names are also awful to search for when
debugging or trying to make sense of code. Imagine asking your edi‐
tor to show you every s or n in a large block of text; it will be nearly
impossible to find what you want in a sea of false positives.

And since callables are first-class citizens in Python, we can produce
nightmares like this by assigning functions to single-letter (and
extremely short) variables, too:

#!/usr/bin/env python
import os,sys
C=os.chdir
S=os.system
M=os.mkdir
J=os.path.join
A=os.path.abspath
D=os.path.dirname
E=os.path.exists
W=sys.stdout.write
V=sys.argv
X=sys.exit
ERR=lambda m:W(m+"\n")
PRNT=lambda m:W(m+"\n")
assert len(V)==2,"you must provide a name"
SB=V[1]
H=A(D(__file__))
SBD=J(D(H),SB)
C(SBD)
...
X(0)

Stare deeply into a line of code like SBD=J(D(H),SB) and it’s like gaz‐
ing into the abyss. The cognitive load of deciphering this later sim‐
ply isn’t worth it—give things meaningful, human-readable names.

Of course, it’s entirely possible to hurt yourself with long names, too.
If you aren’t working with an editor that can do auto-completion,
things like these are filled with peril:

class TestImagineAClassNameThatExceeds80Characters(object):
 ...

def getSomethingFancyfromDictionary(...):
 ...

count_number_of_platypus_incidents_in_avg_season = ...

Will you remember the right spellings or capitalization? (Was it
“number” or “num”? “Average” or “avg”? “From” or “from”?) Will

18 | Chapter 3: Style

you spot the typos? Will you even be able to read the code that uses
these names?

foo, bar, and baz are a good fit for example code, but not something
that has to run and be maintained in production. The same goes for
every silly, nonsense name you might be tempted to use. Will you
even remember what spam or moo do in a week? In six months? I
once witnessed classes named for post-Roman Germanic tribes. Pop
quiz: What does a Visigoth do? How about a Vandal? These names
might as well have been line noise for all the good they did.

Though it grieves me to say it, clever or nerdy cultural references
(my worst offenses were lois.py and clark.py, which did some
reporting tasks, and threepio.py, which communicated with a
partner’s “EWOKS” system) should be avoided as well. Inevitably,
you will be devastated when no one appreciates the joke. Save the
comedy for your code comments.

Even semantically accurate but cute names can be a source of pain.
You’ll command a lot more self-respect when you opt for
LocationResolver over LocationLookerUpper.

Names should be clear, concise, specific, meaningful, and readable.
For a great exploration of this topic, check out Brandon Rhodes’ talk
from PyCon 2013, “The Naming of Ducks”.

Inscrutable Lambdas
You can create anonymous functions inline in your Python code
with lambdas. Using lambdas can make you feel really smart, but
I’ve become progressively allergic to them. Even when they’re sim‐
ple, they can be hard to read and quickly become confusing if there’s
more than one on a line or in an expression:

lstRollout = filter(lambda x: x[-1] == '0',
 filter(lambda x: x != '0|0', lstMbrSrcCombo))

if not filter(lambda lst, sm=sm: sm in lst,
 map(lambda x, dicA=dicA: dicA.get(x, []),
 lstAttribute)):
 ...

When we use a lambda in the middle of a line of code, that 80-
character rule pressures us to really make the most of that line. Cue
the one- and two-character variable names!

Inscrutable Lambdas | 19

http://rhodesmill.org/brandon/talks/

_make_keys = lambda cc, p: tuple(map(
 lambda m, c=cc: ("%s.%s" % (c, m), m), p))

Because the functions created by the lambda are anonymous, we
can’t give them meaningful names that would express what’s going
on. Every time we read them, we have to figure them out all over
again.

These anonymous functions are also not reusable, which means that
if we’re repeatedly using them for the same purpose, we stand a
much larger chance of screwing one of them up. If we’re lucky, it
breaks in a way that gives us an exception to chase down. Otherwise,
we’ve got a very subtle bug that’s hard to pinpoint because it’s hard
to see the error in mostly alike code:

foo = map(lambda x: x[-1].replace('taco', 'cat'), foos)
bar = map(lambda x: x[-1].replace('tacp', 'cat'), bars)
baz = map(lambda x: x[-1].replace('taco', 'cat'), bazzes)

Our future selves will often be better off if we extract that complex‐
ity into a named, reusable, documentable, testable function that we
only have to get right once:

def taco_to_cat(input):
 """Convert tacos to cats"""
 return input[-1].lower().replace('taco', 'cat')

foo = map(taco_to_cat, foos)
bar = map(taco_to_cat, bars)
baz = map(taco_to_cat, bazzes)

Incomprehensible Comprehensions
List comprehensions are great: they’re beautiful, they’re elegant,
they’re inspiring other languages to adopt them. When I discovered
list comprehensions, I fell in love, and I fell hard. I used them at
every opportunity I had. And using them is fine, until they get filled
with so much junk that it’s hard to see what’s even going on.

This example isn’t too bad, but any time comprehensions are nested
like this, it takes more effort to understand what’s happening:

crumbs = [y for y in
 [x.replace('"', '') for x in crumbs] if y]

This one will scare new developers who aren’t friends with zip yet:

return [dict(x) for x in [zip(keys, x) for x in values]]

20 | Chapter 3: Style

And this one’s just freaky:

prop_list = [
 FilterProp(prop='P_EXCLUDED', data='_'.join([i, j, k]))
 for i in prop_data[0]
 for j in prop_data[1]
 for k in prop_data[2]]

All of those examples are real, all of them appeared inline in other
functions, and none of them were commented or explained. (I am
so, so sorry.) At the very least, constructions like this deserve some
kind of comment. They could probably use better variable names
than x or j (and in the i, j, k case, those weren’t even integers for
counting—oof!).

If the comprehension is sufficiently complex, it might even be worth
extracting the whole thing into a separate function with a reasonable
name to encapsulate that complexity. Instead of the examples above,
imagine if we had code that read like this:

crumbs = filter_crumbs(crumbs)

data = dict_from_lists(keys, values)

prop_list = make_exclusion_properties(prop_data)

There might still be complexity lurking behind those function calls,
but it’s all got a chance to have a name, a docstring, and unit tests
that can validate it.

Though we focused on list comprehensions here, the
same perils and possibilities apply to dictionary and set
comprehensions as well. Use them wisely, and only for
good.

Incomprehensible Comprehensions | 21

CHAPTER 4

Structure

It’s a trap!
—Admiral Ackbar

Let’s move on into questions of structure and how you can hurt your
future self with tangled logic and deep coupling. These structural
problems impact your ability to change or reuse your code as its
requirements inevitably change.

Pathological If/Elif Blocks
This anti-pattern arises when you get into the business of creating a
“one-stop shop” function that has to contend with many special
cases.

The first if/else block arrives innocently, and even the first elif
doesn’t seem so bad. But soon their friends arrive:

def do_awesome_stuff():
 ...
 if thing.has_condition_one():
 ...
 elif thing.has_condition_two():
 ...
 elif thing.get_conditions() in ['conditon3', 'condition4']:
 ...
 elif thing.has_condition_forty_two():
 ...
 else:
 ...
 ...

23

Suddenly you find yourself with hundreds of lines of elifs. And
good luck if any of the contents of those blocks is at all complicated
—anyone reading this code will be fortunate if they even remember
they’re in this elif nightmare after 30 or 40 lines. And how excited
will you be to write tests for this function?

This has a kind of momentum as well—special cases tend to attract
more special cases, as if drawn together gravitationally. Just adding
more elifs feels easier than cleaning up. Except cleaning up isn’t so
bad. If we really do need to manage many special cases, we can
employ the Strategy pattern:

def strategy1():
 ...

def strategy2():
 ...

strategies = {
 'condition1': strategy1,
 'condition2': strategy2,
 ...
}

def do_awesome_stuff():
 which_one = ...
 strategy = strategies[which_one]
 strategy()
 ...

We start by extracting the contents of our if/elif/else structure
into separate functions with identical interfaces. Then we can create
a dictionary to map conditions to those strategy functions. The dic‐
tionary key doesn’t have to be a string. It can be anything hashable,
so tuples and frozensets can be quite effective if we need richer con‐
ditions. Finally, our original function determines which key to use,
plucks the appropriate strategy function from our dictionary, and
invokes it.

Our original function is now much, much simpler to understand, as
are each of the strategies, and writing tests for each of the now-
isolated strategies is straightforward.

However, figuring out what value to use for that dictionary key can
sometimes be complicated. If it takes 200 lines to determine what
key to use, is this really much of a victory?

24 | Chapter 4: Structure

If that’s the case, consider externalizing it entirely, and let the strat‐
egy be chosen by the caller, who may in fact know better than we do
about whatever those factors are. The strategy is invoked as a call‐
back:

def do_awesome_stuff(strategy):
 ...
 strategy()
 ...

result = do_awesome_stuff(strategy1)

From there it’s not too far of a jump into dependency injection,
where our code is provided with what it needs, rather than having to
be smart enough to ask for it on its own:

class Foo(object):

 def __init__(self, strategy):
 self.strategy = strategy

 def do_awesome_stuff(self):
 ...
 self.strategy()
 ...

foo = Foo(strategy2)
foo.do_awesome_stuff()

Unnecessary Getters and Setters
In between Perl and Python, there was a brief window where I was
immersed in Java, but its influence lingered far beyond those few
months. When I got to do some of my first brand new, greenfield
development of an invitation service, I made sure that all of the
model objects were replete with getters and setters because, darn it,
this was how object-oriented programming was supposed to be! I
would show them all—attribute access must be protected!

And thus it was that I produced many classes that looked like this:

class InviteEvent(object):
 ...

 def getEventNumber(self):
 return self._intEventNumber

Unnecessary Getters and Setters | 25

 def setEventNumber(self, x):
 self._intEventNumber = int(x)

 ...

Each and every attribute of each and every class had getter and set‐
ter functions that did barely anything. The getters would simply
return the attributes that they guarded, and the setters would occa‐
sionally enforce things like types or constraints on the values the
attributes were allowed to take. This InviteEvent class had 40 get‐
ters and 40 setters; other classes had even more. That’s a lot of code
to accomplish very little—and that’s not even counting the tests
needed to cover it all.

And trying to work with instances of these objects was pretty awful,
too—this kind of thing quickly becomes tiresome:

event.setEventNumber(10)
print event.getEventNumber()

Fortunately, there’s a practical, Pythonic solution to this labyrinth of
boilerplate: just make most attributes public, and use properties to
protect any special snowflakes that need extra care and feeding.

Properties let you provide functions that masquerade as attributes of
the object: when you read the attribute, a getter is invoked; when
you assign to the attribute, a setter is called; when you try to delete
the attribute, it’s managed by a deleter. The setter and deleter are
both optional—you can make a read-only attribute by declaring
only the getter. And the really great thing is that you don’t need to
know in advance which attributes will need to be properties. You
have the freedom to sketch out exactly what you want to work with,
then transparently replace attributes with properties without having
to change any calling code because the interface is preserved.

In modern Python, properties are constructed with the @property
decorator, which is just syntactic sugar for a function that replaces a
method with a property object of the same name and wires it up to
the getter. The property object also has setter and deleter func‐
tions that can be used as decorators to attach setter and deleter func‐
tionality to the property.

That might sound complicated, but it’s actually rather clean:

class InviteEvent(object):
 ...

26 | Chapter 4: Structure

 @property
 def event_number(self):
 return self._event_number

 @event_number.setter
 def _set_event_number(self, x):
 self._event_number = int(x)

 @event_number.deleter
 def _delete_event_number(self):
 self._event_number = None

 ...

The only trick is remembering to use the name of the property when
hooking up the setter or deleter, rather than using @property itself.

One nice thing about this decorator-based approach is that it doesn’t
junk up the namespace of the class with a bunch of functions that
you really don’t want anyone to call. There’s just the single property
object for each property!

Using these objects is far more comfortable than before, too. All
those function calls and parentheses simply vanish, leaving us with
what looks like plain old “dot” access:

event.event_number = 10
print event.event_number

Getting Wrapped Up in Decorators
One of the things I was most excited about as Python evolved was
the opportunity to use decorators to attach reusable functionality to
functions and methods. We saw its benefits above with @property.

A decorator is a function (or, more generally, a callable) that returns
a function, which replaces the function being decorated. Imagine a
small nesting doll (the function being decorated), placed inside
another nesting doll (the “wrapper” function returned by the deco‐
rator). We use the syntactic sugar of the @ symbol to apply decora‐
tors to functions being decorated.

Here’s a simple decorator that wraps a function in another function
that does something special before allowing the first function to be
executed:

def my_decorator(function):
 def wrapper(*args, **kwargs):

Getting Wrapped Up in Decorators | 27

 # do something special first
 ...
 return function(*args, **kwargs)
 return wrapper

@my_decorator
def foo(x, y, z):
 ...

Typical uses for decorators involve altering or validating the input to
a function, altering the output of a function, logging the usage or
timing of a function, and—especially in web application frameworks
—controlling access to a function. You can apply as many decorators
as you want, too—it’s nesting dolls all the way down!

Decorators sound pretty swell, so why are we talking about them in
a book about mistakes?

When you use Python’s decorator syntax to wrap and replace func‐
tions, you immediately couple the original function to all the behav‐
ior that comes with the wrapper. If the original function is about
making some calculation and the wrapper is about logging, the
result is a function that’s inescapably, inextricably about both of
those concerns. This coupling is compounded with each additional
decorator that’s applied.

Did you want to test the original function in isolation? Too bad—
that function is effectively gone. Your test has no choice but to exer‐
cise the final, multilayered Frankenstein function, which means you
may have a series of unpleasant hoops to jump through in order to
set up the test, none of which is material to the problem the original
function is attempting to solve. The same goes for trying to call that
original function in your production code—once the decorators
have been applied, you’re stuck with all the extra baggage that comes
with them.

As a web developer, I encounter this the most when writing unit
tests for controller methods (“views” in the Django parlance),
because I often have several layers applied. A typical example might
look something like this:

class MyController(object):

 @require_https
 @require_signed_in
 @validate_form(SomeForm(), ...)
 @need_database_connection

28 | Chapter 4: Structure

 def handle_post(self, request):
 ...
 return HTTPResponse(...)

It can be hugely beneficial to have those access controls written in a
way that they can quickly be reused throughout the application, but
it means that if I’m going to write tests, I have to do all the work
required to fake out the request context so that the request will
actually make it to the code that I want to test. In an ideal world, the
innermost method I’m testing is simple and doesn’t need more than
one or two tests to cover its behavior, but if it’s at all complicated, the
amount of setup necessary can become quite tedious (unless of
course you get excited about refactoring unit tests, in which case
have at it!).

And all of that setup means that I’m not only testing the original
function, but in effect I’m testing all of the wrappers that the func‐
tion has been decorated with, each of which should already have
tests of their own.

The approach I’ve gravitated toward is to make the decorated
method as simple and devoid of logic as possible, pushing all of its
smarts down into a deeper layer of abstraction that can be tested in
isolation:

class MyController(object):

 @require_https
 @require_signed_in
 @validate_form(SomeForm(), ...)
 @need_database_connection
 def handle_post(self, request):
 # get data from request
 data = { ... }
 self.object_service.create_object(data)
 return HTTPResponse(...)

Then the responsibility of the controller method is limited to receiv‐
ing the request and handing the right data off to someone else,
which makes its tests simpler as well. It also means that the core
business logic is relocated away from the web interface and into a
position that allows it to be reused.

Breaking the Law of Demeter
The Law of Demeter (also known as the principle of least knowl‐
edge) tells us that our code should only interact with the things that

Breaking the Law of Demeter | 29

https://en.wikipedia.org/wiki/Law_of_Demeter

it knows about, and not reach deeply into nested attributes, across
friends of friends, and into strangers.

It feels great to break this law because it’s so expedient to do so. It’s
easy to feel like a superhero or a ninja commando when you quickly
tunnel through three, four, or more layers of abstraction to accom‐
plish your mission in record time.

Here are just a few examples of my countless crimes. I’ve reached
across multiple objects to call a method:

gvars.objSession.objCustomer.objMemberStatus.isPAID()

Or reached through dictionaries to call a method to get an object to
use to call another method:

if gvars.dctEnv['session'].getCustomer().isSignedIn():
 ...

Or called single-underscore-prefixed internal methods of an object:
(more on this in a moment):

current_url = self.objSession._getCurrentURL()

Or called a method on an item plucked from a list returned by a
method call on a single-underscore internal attribute of an object:

return event._objGuestList.getGuestList()[0].getEventSequence()

Yikes!

This kind of thing might be okay when we’re debugging, or explor‐
ing in an interactive shell, but it’s bad news in production code.
When we break this law, our code becomes brittle. Instead of relying
on the public interface of a single object, it now relies on a delicate
chain of nested attributes, and any change that disrupts that chain
will break our code in ways that will furrow our brows as we strug‐
gle to repair the complex code plumbing mess we’ve made for our‐
selves.

We should especially avoid depending on single- and double-
underscore internals of an object, because they are prefixed this way
for a reason. We are explicitly being told that these items are part of
the internal implementation of the object and we cannot depend on
them to remain as they are—they can be changed or removed at any
time. (The single underscore is a common convention to indicate
that whatever it prefixes is “private-ish,” while double-underscore
attributes are made “private” by Python’s name mangling.)

30 | Chapter 4: Structure

The problem of these violations is even worse than it seems, for it
turns out that the brittleness and calcification of the system happens
in both directions. Not only is the calling code locked into the inter‐
nal interfaces that it’s traversing, but each and every object along
that path becomes locked in place as well, as if encased in amber.
None of these objects can be freely or easily changed, because they
are all now tightly coupled to one another.

If it really is the responsibility of an object to surface something
from deep within its internals, make that a part of the object’s public
interface, a first-class citizen for calling code to interact with. Or
perhaps an intermediary helper object can encapsulate the traversal
of all those layers of abstraction, so that any brittleness is isolated to
a single location that’s easy to change instead of woven throughout
the system. Either way, let abstraction work for you. This frees both
the caller and callee to change their implementations without dis‐
rupting each other, or worse, the entire system.

Overusing Private Attributes
When I started with Python, I was still fresh out of school, where I’d
heard over and over again about the importance of object-oriented
programming ideals like “information hiding” and private variables.
So when I came to Python, I went a little overboard with private
methods and attributes, placing leading double underscores on
practically everything I could get my hands on:

class MyClass(object):

 def __init__(self, arg1, arg2, ...):
 self.__attr1 = arg1
 self.__attr2 = arg2
 ...

 def do_something(self):
 self.__do_a_step()
 self.__do_another_step()
 self.__do_one_more_step()
 self.__do_something_barely_related()

 # and so forth...

“Hands off!” this code shouts. “You’ll never need to use these things,
and I know better than you!”

Overusing Private Attributes | 31

Inevitably, I discovered that I did need to use code that was hiding
behind the double underscore, sometimes to reuse functionality in
previously unforeseen ways, sometimes to write tests (either to test a
method in isolation or to mock it out).

Let’s say we wanted to subclass that MyClass up above, and it needs a
slightly customized implementation of the do_something method.
We might try this:

class MyOtherClass(object):

 def do_something(self):
 self.__do_a_new_step()
 self.__do_one_more_step()

This will fail with an AttributeError, because the name mangling
that Python applies to make the attribute private means that our
subclass won’t actually have a __do_one_more_step method to call.
Instead, we would have to invoke self._MyClass__do_one_

more_step, and that’s just nasty.

All that privacy just got in the way. What at first seemed like a cool
language feature turned out to be a giant nuisance that I was always
working around.

In time, I came to prefer using just a single underscore to politely
indicate that an attribute is part of the internal implementation of a
class and shouldn’t be referenced externally without some hesitation.
Since single-underscore names aren’t mangled, they can be more
conveniently used if you absolutely must break the Law of Demeter.

Further experience taught me that I shouldn’t even want to do that.
When “outside” code wants access to the internals of a class, those
“internal” attributes probably shouldn’t be private at all; rather, this
is a clear signal that those attributes should be public. The code is
telling us that it’s time to refactor!

The “private” attribute we keep using externally should either be
promoted to not have any leading underscores, or should be
exposed via a property if some amount of control is still required. If
we feel the need to replace or monkey-patch an internal method of a
class, we should instead be thinking about extracting that into a
strategy that perhaps we just pass in to the public method we’re call‐
ing. If we find that we need to call into that “internal” functionality
in multiple places, then what the code is telling us is that that func‐
tionality doesn’t really belong in this class at all. It should be extrac‐

32 | Chapter 4: Structure

ted into a separate function, or if complex enough, into a separate
object that the class might collaborate with rather than wholly con‐
tain.

God Objects and God Methods
A well-behaved class or method should have a strictly limited set of
responsibilities, preferably as close to one as possible (in accordance
with the Single Responsibility Principle), and should only contain
whatever knowledge or data it needs to fulfill its limited role. All
classes and methods start this way, simple and innocent, but we may
find it convenient or expedient to grow these entities as our require‐
ments evolve. When a class or method has accumulated too much
knowledge or too many responsibilities, its role in the system
becomes practically godlike: it has become all-encompassing, all-
seeing, and all-doing, and many other entities will end up being
tightly coupled to it in order to get anything done. Like big banks in
the autumn of 2008, our god objects and god methods are too big to
maintain, yet too big to fail.

These are pretty easy to spot: we’re looking for large modules, large
classes, classes with many methods, and long methods or functions.
There are a couple of different ways to go about this.

Pylint will by default complain about modules longer than 1000
lines and functions longer than 50 lines (and you can adjust these
values as needed), but you have to look carefully at its voluminous
output to make sure you don’t miss these warnings. WingIDE and
Komodo integrate with Pylint for code inspection, so they’ll also
help you find these problems. Curiously, while PyCharm offers code
inspection that covers many of the same issues that Pylint does, it
doesn’t include warnings about module or function length.

If you aren’t someone who enjoys working with an IDE, you can use
some Unix command-line kung fu to identify potential sources of
godlike trouble:

$ find . -name "*.py" -exec wc -l {} \; | sort -r
$ grep "^class " bigmodule.py | wc -l
$ grep "\sdef " bigmodule.py | wc -l

Find all Python soure files, count the number of lines, and sort
the results in descending order, so that the files with the most

God Objects and God Methods | 33

lines bubble to the top of the list; anything over 1000 lines is
worth further investigation.

Count the number of classes defined in a big module…

And the number of methods defined at some level of indenta‐
tion (i.e., within a class or within other functions) in that mod‐
ule.

If the ratio of methods to classes seems large, that’s a good warning
sign that we need to take a closer look.

Or, if we feel like being creative, we can use Python to make a little
cross-platform tool:

import collections
import fileinput
import os

def find_files(path='.', ext='.py'):
 for root, dirs, filenames in os.walk(path):
 for filename in filenames:
 if filename.endswith(ext):
 yield(os.path.join(root, filename))

def is_line(line):
 return True

def has_class(line):
 return line.startswith('class')

def has_function(line):
 return 'def ' in line

COUNTERS = dict(lines=is_line, classes=has_class,
 functions=has_function)

def find_gods():
 stats = collections.defaultdict(collections.Counter)
 for line in fileinput.input(find_files()):
 for key, func in COUNTERS.items():
 if func(line):
 stats[key][fileinput.filename()] += 1

34 | Chapter 4: Structure

 for filename, lines in stats['lines'].most_common():
 classes = stats['classes'][filename]
 functions = stats['functions'][filename]
 try:
 ratio = "=> {0}:1".format(functions / classes)
 except ZeroDivisionError:
 ratio = "=> n/a"
 print filename, lines, functions, classes, ratio

if __name__ == '__main__':
 find_gods()

This small program is enough to recursively find all .py files; count
the number of lines, classes, and functions in each file; and emit
those statistics grouped by filename and sorted by the number of
lines in the file, along with a ratio of functions to classes. It’s not per‐
fect, but it’s certainly useful for identifying risky modules!

Let’s take a high-level look at some of the gods I’ve regretted creating
over the years. I can’t share the full source code, but their summaries
should illustrate the problem.

One of them is called CardOrderPage, which spreads 2900 lines of
pain and suffering across 69 methods, with an 85-line __init__ and
numerous methods in excess of 200 to 300 lines, all just to shovel
some data around.

MemberOrderPage is only 2400 lines long, but it still packs a whop‐
ping 58 methods, and its __init__ is 90 lines. Like CardOrderPage,
it has a diverse set of methods, doing everything from request han‐
dling to placing an order and sending an email message (the last of
which takes 120 lines, or roughly 5 percent of the class).

Then there’s a thing called Session, which isn’t really what most web
frameworks would call a session (it doesn’t manage session data on
the server), but which instead provides context about the request,
which is a polite way to say that it’s a big bag of things that you can
hurt yourself with. Lots of code in this codebase ended up being
tightly coupled to Session, which presents its own set of problems
that we’ll explore further in a later section.

At the time that I captured the data about it, Session was only about
1000 lines, but it had 79 methods, most of which are small, save for a
monstrous 180-line __init__ laden with mine fields and side
effects.

God Objects and God Methods | 35

Besides line count, another way you can identify god methods is by
looking for naming anti-patterns. Some of my most typical bad
methods have been:

def update_everything(...):
 ...

def do_everything(...):
 ...

def go(...):
 ...

If you find these kinds of abominations in your code, it’s a sign that
it’s time to take a deep breath and refactor them. Favor small func‐
tions and small classes that have as few responsibilities as possible,
and strive to do as little work as possible in the __init__ so that
your classes are easy to instantiate, with no weird side effects, and
your tests can be easy and lighweight. You want to break up these
wanna-be gods before they get out of hand.

Increasing the number of small classes and methods may not opti‐
mize for raw execution speed, but it does optimize for maintenance
over the long term and the overall sanity and well-being of the
development team.

Global State
We come now to one of my greatest regrets. This module is called
gvars.py, and it started simply as a favor to another developer who
needed easy access to some objects and didn’t want to pass them
around everywhere, from way at the top of the stack to deep down
in the guts:

dctEnv = None
objSession = None
objWebvars = None
objHeaders = None
objUserAgent = None

It’s basically just a module that has some module-level global vari‐
ables that would get repopulated by the app server with every
request that would come in over the web. If you import it, you can
talk to those globals, and you can do this at any level, from those
lofty heights that first see the request, where it seems like a reason‐
able thing to want to do, all the way down to the darkest, most hor‐

36 | Chapter 4: Structure

rible depths of your business logic, data model, and scary places
where this has no business being. It enables this sort of thing at
every level of your system:

from col.web import gvars
...

if gvars.objSession.hasSomething():
 ...

if gvars.objWebvars.get('foo') == 'bar':
 ...

strUserName = \
 gvars.objSession.objCustomer.getName()

This is tremendously convenient when you’re writing website code
—you can get at anything important about the request at any point,
no matter where you are. Poof! Magic!

But as soon as you need to do anything else, it all falls apart. Any
kind of script, cron job, or backend system is doomed, because if it
needs to use anything that has been tainted by gvars, well, too bad!
Code that uses gvars is immediately tightly coupled to the context
of a web request, where normally the app server would set up all of
those heavyweight objects based on the request. But outside of the
context of a request, we don’t have an app server, we don’t get all
those objects made for free, and even if we did, they wouldn’t make
sense—what is a user agent or POST variable in the context of a
cron job?

The only hope for using code that’s bound to gvars outside of its
native milieu is to do extensive faking, populating gvars manually
with objects that are good enough to get by, and providing your own
specially crafted return values when necessary. This is less fun than
it sounds.

Let’s consider an example of the madness that gvars begat. The
PermissionAdapter is a class that would fetch question data for
managing user opt-ins and opt-outs for various flavors of email.
Naturally, for convenience, it depended on a pile of objects created
by the app server and injected into gvars at request time, and it was
so internally knotty that refactoring it to clean it up was frowned
upon, lest we end up doing more harm than good. No, it didn’t have
unit tests, why do you ask?

Global State | 37

from col.web import gvars

class PermissionAdapter(object):

 def __init__(self, ...):
 # uh-oh, this can’t be good...
 dctEnv = gvars.dctEnv
 self._objWebvars = dctEnv["webvars"]
 self._objSession = dctEnv["session"]
 self._objHeaders = dctEnv["headers"]

 def getQuestions(...):
 site = self._objSession.getSiteGroup()
 data = self._someThingThatWants(site)
 ...

For its specific purpose, it got the job done, albeit with little flexibil‐
ity.

One day, I had to figure out how to surface the permission questions
for more than one sitegroup (a fancy internal term for a customer
namespace). Without some serious refactoring, this just wasn’t pos‐
sible as-is.

So instead—and I am so, so sorry for this—I wrote a
PermissionFacade wrapper around the PermissionAdapter, and its
job was to fake out the necessary objects in gvars using Mock
objects, instantiate a PermissionAdapter, then restore the original
gvars before leaving the method:

class PermissionFacade(object):

 def __init__(self, ...):
 self.webvars = Mock()
 self.session = Mock()
 self.headers = Mock()

 def get_questions(sitegroup, ..., whatever):
 adapter = self.make_adapter(...)
 return adapter.getQuestions(...)

 def _make_adapter(self, sitegroup, ...):
 from col.web import gvars
 orig_gvars_env = gvars.dctEnv
 gvars.dctEnv = {
 'webvars': self.webvars,
 'session': self.session,
 'headers': self.headers,
 }
 self.session.getSource.return_value = source

38 | Chapter 4: Structure

http://www.voidspace.org.uk/python/mock/

 self.session.getSourceFamily.return_value = \
 source_family
 try:
 self.permission_adapter = PermissionAdapter(
 sitegroup, ...)
 # ...and some other grotesque mock monkey
 # patching to fake out a request context...
 finally:
 gvars.dctEnv = orig_gvars_env
 return self.permission_adapter

Thank goodness we at least have finally to give us the opportunity
to put the original values back into place. This makes sure that no
matter what happens during the corresponding try, we’ll put every‐
thing back where it was so that we can service other callers. Subse‐
quent calls can ask for questions for a diffent sitegroup, and we can
then combine the results further upstream.

But patching things into place like this in production code is a bad
idea, because it’s just too easy to screw up in a way that’s weird or
subtle. Even in the normal web server context, something like gvars
can lead to safety issues and possible data leakage between requests
unless it’s carefully managed, as those module-level globals will per‐
sist as long as the process is running. We’ll see this come back to
haunt us in the next chapter.

Avoid global state as much as humanly possible. Resist its siren lure,
reject its convenience, refuse the temptation, no matter how much
your colleagues think they want it. In the long run, they’ll thank you
for not having to maintain such monstrosities.

Global State | 39

CHAPTER 5

Surprises

If you do not expect the unexpected you will not find it,
for it is not to be reached by search or trail.

—Heraclitus

At last, we get to the really weird stuff, the things that go bump in
the night and cause someone to get paged to solve them. These are
some of the many ways that you can create little time bombs in your
code, just waiting to surprise and delight you at some point in the
future.

Importing Everything
PEP-8 recommends avoiding wildcard imports (from some_module
import *), and it’s absolutely right. One of the most exciting reasons
is that it opens your code up to some interesting ways to break in a
multideveloper environment.

Suppose there’s some module foo.py that has a bunch of great
things in it, and your code wants to make use of many of them. To
save yourself the tedium of either importing lots of individual
names, or importing just the module and having to type its name
over and over again, you decide to import everything:

import time
from foo import *

def some_function(...):

41

 current_time = time.time()
 ...

This works fine, your tests pass, you commit the change, and off it
goes up the deployment pipeline. Time passes, until one day errors
start flooding in. The traceback tells you that your code is causing
AttributeError exceptions when trying to call time.time(). But
the unit tests are all green—not only are the tests for your code pass‐
ing, so are the tests for foo.

What’s happening in this ripped-from-reality scenario is that some‐
one has added a time to foo.py that isn’t the standard library mod‐
ule of the same name. Maybe they defined time as a module-level
global variable, or made a function with the same name, or perhaps
they, too, didn’t like typing a module name in numerous function
calls and so imported it like this:

from time import time

...

Because the import * happened after the import time in your code,
the name time is replaced by the one from from foo import *,
supplanted like a pod person from Invasion of the Body Snatchers.

The tests didn’t catch this error because they were unit tests, and
intentionally isolated the code under test (your module—or in real‐
ity, mine) from dependencies that are hard to control. The entire
time module was mocked out in the tests to allow it to be controlled,
and because it was mocked out, it presented exactly the expected
interface. And of course the tests for foo itself pass—they’re verify‐
ing that the things inside that module are behaving correctly; it’s not
their responsibility to check up on what callers are doing with this
module.

It’s an easy mistake to make. Whoever changed foo.py didn’t look to
see if anyone else was importing everything, and you were busy
working on other things and either didn’t see the change come in or
it didn’t register with you. This is especially possible if foo.py is
some third-party library that you might upgrade without much
review—this hazard is just a pip install -U away!

So, do as PEP-8 suggests, and avoid wildcard imports! Don’t do
them, don’t let your colleagues do them, and if you see them in code
that you maintain, correct them.

42 | Chapter 5: Surprises

If people on your team really like to import * and
you’re having a hard time convincing them that it’s a
bad idea, just slip this little gem into a module that
they import everything from:
False, True = True, False

Yes, Python will let you reverse the meanings of True
and False. Please use this knowledge with kindness…
unless they really deserve it.

You can also insulate clients from import * problems
to some degree by defining an __all__ in your pack‐
ages—a list of strings that will be the only things
imported when someone imports * from the module.
For example, if we only wanted to let foo and bar be
wildcard-imported, and disallow baz, we might write:
__all__ = ['foo', 'bar']

def foo():
 ...

def bar():
 ...

def baz():
 ...

Overbroadly Silencing Exceptions
If you’d really like to make your future self cry, try throwing a try/
except around some statements and just ignore any exceptions that
might be raised:

def get_important_object():
 try:
 data = talk_to_database(...)
 return ImportantObject(data)
 except:
 pass

foo = get_important_object()
foo.do_something_important()

In this example, foo is either an ImportantObject instance, in
which case it will dutifully do_something_important when asked, or

Overbroadly Silencing Exceptions | 43

it will be None, and blow up with an AttributeError when we try to
call that method.

Around my office, we call this the “Diaper Pattern”, which is proba‐
bly my favorite anti-pattern name of all time, because it’s vividly apt
to anyone who has ever managed the excretory needs of a small
human. In our code, we’ve wrapped a metaphorical diaper around
something that might make a mess in the hopes that it will simply
catch everything, but as parents of young children know, “blowouts”
are inevitable.

It’s recently been referred to as “the most diabolical” Python anti-
pattern, and for good reason: all the precious context for the actual
error is being trapped in the diaper, never to see the light of day or
the inside of your issue tracker.

When the “blowout” exception occurs later on, the stack trace points
to the location where the secondary error happened, not to the
actual failure inside the try block. If we’re very lucky, as in the trivial
example above, the secondary error happens close to its true source
inside the diaper. In the harsh and unforgiving real world, however,
the source may be tens, hundreds, or even thousands of lines away,
buried under umpteen layers of abstractions in a different module
or, worse, in some third-party library, and when it fails, just as dia‐
pers fail, it will fail in the small hours of the night when we would
rather be sleeping, and someone important will make an awful fuss
about it. It will not be fun.

The Zen of Python tells us that “errors should never pass silently…
unless explicitly silenced.” We’re often a lot better off if we just let
exceptions bubble up immediately, uncaught, because at least we
know what they really are and where they came from. If we can’t get
our important data, or make our important object, we’ll know right
away, and why:

def get_important_object():
 data = talk_to_database(...)
 return ImportantObject(data)

foo = get_important_object()
foo.do_something_important()

If we really do want to catch some exceptions, we should catch them
explicitly, while allowing unanticipated exceptions to raise freely:

44 | Chapter 5: Surprises

http://bit.ly/diaper-pattern
http://bit.ly/1Kl9f1x
http://bit.ly/1Kl9f1x

def get_important_object():
 try:
 data = talk_to_database(...)
 except IOError:
 # Handle the exception appropriately;
 # perhaps use default values?
 data = { ... }
 return ImportantObject(data)

Just using a bare except isn’t a great idea in general,
because that will catch everything, including exceptions
like SystemExit and KeyboardInterrupt that we’re
generally not meant to silence. If you must broadly
catch exceptions, it’s usually better to use except
Exception instead of just except.

The one acceptable use I have found for the “Diaper Pattern” is at
high-level system boundaries, such as a RESTful web service that
should always return a well-formed JSON response, or an XML-
RPC backend that must always return a well-formed blob of XML.
In such a case, we do want to catch everything that might go wrong,
and package it up in a way that clients will be able to cope with it.

But even when the need for the diaper is legitimate, it’s not enough
to just package up the error and wash our hands of it, because while
our clients will be able to complain to us that our service is broken,
we won’t actually know what the problem is unless we do something
to record the exception. The logging module that comes with
Python makes this so trivial that it’s almost pleasant. Assuming you
have a logger instance handy, simply invoking its exception
method will log the full stack trace:

def get_important_object():
 ...
 try:
 data = talk_to_database(...)
 return ImportantObject(data)
 except Exception:
 logger.exception("informative message")
 ...

Now we’ll know what happened, where it happened, and when, and
that can make all the difference when cleaning things up in the mid‐
dle of the night.

Overbroadly Silencing Exceptions | 45

Reinventing the Wheel
Maybe it’s because the Zen of Python admonishes us that there
should be “one and only one obvious way to do it,” or maybe it’s just
because Python makes it so much fun to make things, but it’s really
tempting to reinvent solutions that have come before—in some
cases, many, many times. This can lead to some problematic sur‐
prises.

In the bad old days when my workplace used Python 1.5, we needed
to log things, so someone wrote a log module. But log was insuffi‐
cient, so someone else created xlog, which was apparently too com‐
plicated, so we made simplelog. Sensing a lack of awesomeness in
simplelog, we called upon superlog to solve our problems. But
superlog wasn’t performant enough, so we created the minimalist
pylogger. It, however, was too terse for larger logging payloads, so it
seemed like a good idea to write prettylog (spoiler alert—it wasn’t).
Unfortunately, prettylog emitted a format that was so difficult to
use that we ended up writing a program called unuglify.py that we
could pipe prettylog-formatted output through just so that we
could read the darn things. Oh, and it could give you a completely
different format if you created it with the wrong flag:

Example 5-1. PrettyLog output

|---|
|V|0622234435| test.py| test.py| 26632| 16|
|---|
|V|Hello world. This is a PrettyLog log message, and it does some |
|V|funky things when it gets sufficiently long. Good luck parsing |
|V|this stuff! Ops folks go crazy because of this one weird trick!|
|V|None |

Example 5-2. Surprise! Another flavor of PrettyLog output

Level: V
Time: 06/22/2015 23:44:35
Application: test.py
Module: test.py
Line Number: 15
PID: 26632
Hello world. This is a PrettyLog log message, and it does some funk
y things when it gets sufficiently long. Good luck parsing this stu
ff! Ops folks go crazy because of this one weird trick!

46 | Chapter 5: Surprises

We were conservative about migrating to Python 2, so while the rest
of the world moved on, we backported an early version of the stan‐
dard library’s logging module into our codebase, and this slightly-
dodgy, poorly maintained port hung around a lot longer than any‐
one expected it to. Someone who didn’t like the interface of logging
wrote an alternative called logmanager, and it also survived for quite
some time in roughly equal mindshare with logging. Finally, when
we deployed Python 2.3, I discovered the standard library’s built-in
logging module and promptly wrote a wrapper around it called
logwrangler so that it could be easily driven from configuration
files. Someone thought that was a nice idea but decided that it
should live somewhere else, so it was copied and forked as agi.log,
where it picked up bugs of its own.

No two of these implementations had exactly identical interfaces, so
it was always a surprise to work with code that was trying to do
some logging, as any log, logger, or objLog could be any one of
nearly a dozen incompatible things. Behaviors, performance charac‐
teristics, and even implementation quirks and bugs varied, so it was
never clear which one you really wanted to use. One particularly
subtle nuance was that some of the logging variants used slightly
different strategies for determining the calling frame, so they’d be
inconsistent about recording the module or line number that a log‐
ging call originated from. Others had pre-baked formats that
switched up the order of the elements being logged, to the aggrava‐
tion of the ops folks who had to parse them. It was usually easier to
forgo logging entirely to avoid being paralyzed by the choices avail‐
able.

There are a few key lessons we can take away from this parade of
embarrassments:

• Look at the standard library and PyPI to see if someone has
already solved your problem. If whatever problem it is isn’t your
core domain, your home-grown implementation is probably
going to be worse.

• If you decide to replace one solution in favor of another, see it
through; update the codebase to your new standard so that you
don’t have a dozen ways to do essentially the same thing.

• Establish and enforce standards so that surprises—both during
development and at runtime—are minimized.

Reinventing the Wheel | 47

Mutable Keyword Argument Defaults
Let’s say you want one of the arguments to a function to be optional,
and to have a default value when you don’t explicitly pass one.
Python makes it easy—just use a keyword argument, like so:

def foo(bar, baz=42):
 ...

But if the default value happens to be something mutable—a list,
dictionary, class, object, that sort of thing—you may have some sur‐
prises in store for you if you end up altering it in any way. Consider
this well-intentioned function from a real-world web application
that wants to set some reminders associated with an event:

def set_reminders(self, event, reminders=[]):
 reminders.extend(self.get_default_reminders_from_prefs())
 for reminder in reminders:
 ...

This function tries to be so helpful: it’s trying to self-document that
it takes a list of reminder objects, it’s trying to let that argument be
optional, and it’s trying to ensure the user’s preferences are respec‐
ted. But what it’s really doing is setting the stage for mysterious bug
reports from QA that are accompanied by screenshots like this:

Figure 5-1. Way too many reminders!

48 | Chapter 5: Surprises

And, after a few more hours of QA testing, this:

Figure 5-2. Way, way too many reminders!

What the heck happened? Why is this such a train wreck? Once the
right logging was introduced, the problem became clear.

It turns out that Python doesn’t give us a new list every time the
function gets called; it creates that empty list when the function is
defined during the import of its module. After that, we get the same
list every time the function is called without passing reminders.
This issue never manifested in our development environment
because our homegrown app server would fork a fresh Python pro‐
cess for each request. But in our QA and production environments,
the app server process was long-lived, so it would look okay for a
few minutes immediately after deploying updates with our attempts
to smoke out this bug, but would eventually accumulate more and
more data as this function handled more traffic.

Mutable Keyword Argument Defaults | 49

Stop for a second and really think about that—this excess data came
from other requests. Other requests potentially came from other
users.

What if it included personal details, like names or addresses? What
if it included health information? What if it included payment data,
like a credit card number? The consequences could range from
embarassing to catastrophic.

Thankfully, this bug never made it to production, and once we loca‐
ted the problem code, the fix was straightforward. When the default
value really does need to be mutable, we set it to None in the func‐
tion definition, and then immediately give it a reasonable default
inside the function itself:

def set_reminders(self, event, reminders=None):
 reminders = reminders or []
 # or, if there are valid falsey inputs
 # that we'd like to preserve:
 reminders = [] if reminders is None else reminders
 ...

This way we’re guaranteed to start with a fresh instance each time
the function is called, and data won’t leak between invokations.

Overeager Code
For longer than I care to admit, I thought it was good for code to be
proactive, to make things convenient to set up and get going. This
led me to create code that would do too much, too soon, resulting in
side effects that hampered reusability and impacted performance.

These mistakes fall into two basic categories: doing too much when
a module is imported and doing too much when an object is instan‐
tiated.

At Import Time
It can be tempting to set up globally available values at the module
level so that everything else can use them right away. Maybe we’re
establishing a database connection, perhaps performing some
expensive calculation, traversing or transforming a large data struc‐
ture, or fetching data from an external service.

50 | Chapter 5: Surprises

""" A module full of useful things! """

db_conn, cursor = connect_to_db(...)

fibs = [fibonacci(x) for x in range(100)]

pairs = requests.get(human_genome_url).json()
for pair in pairs:
 pair = [pair[1], pair[0]]

def simple_function():
 return 1 + 1

...

This (admittedly hyperbolic) example illustrates several of these
ideas. If we want to call that simple function in another module,
even if it doesn’t need a database, we’re forced to connect to one
when this module is imported. We’re going to calculate all those
Fibonacci numbers, or make a call to a slow web API to get and sub‐
sequently mangle giant gobs of data. Any code that wants to use this
simple function is stuck waiting for all of this other work to happen.
Unit tests that import this module will be disappointingly slow, lead‐
ing to a temptation to skip or disable them.

What if the calling code doesn’t even have a database it can connect
to? Or it runs in an environment that can’t connect out to the web?
That simple little function becomes useless if one of these things
fails; the entire module will be impossible to import. Older versions
of Python made hunting down these kinds of surprises even more
fun, as an exception at import time would get masked in an
ImportError, so you might not even know what the actual failure
was.

A closely related anti-pattern is to put functionality into the
__init__.py of a package. Imagine a foo package that contains an
__init__.py as well as submodules bar and baz. Importing from
bar or baz means that Python first imports the __init__.py.

This can go wrong in a couple of ways. First, an exception during
the import of __init__.py will prevent the import of any of the sub‐
modules or their contents:

""" __init__.py for package 'foo' """

raise Exception("Oh no!")

Overeager Code | 51

Another possible disaster is a circular import. In this case, nothing
from the foo package can be imported because the __init__.py
can’t import from bar, because it can’t import from foo.__init__,
which can’t import from bar, which can’t import from
foo.__init__ (and so forth):

""" __init__.py for package 'foo' """

from bar import function_from_bar

def my_function():
 return function_from_bar() + 1

""" foo.bar """

from foo import my_function

def function_from_bar():
 ...

The takeaways here should be straightforward:

• Don’t do expensive things at import.
• Don’t couple to resources that might not be available at import.
• Don’t put anything into an __init__.py that could jeopardize

the import.
• Beware of circular imports.

In short: try not to do that.

At Instantiation Time
Loading up the __init__ or __new__ methods of a class with a lot of
extra work is similar to what we saw above at the module level, but
with a couple of insidious differences.

First, unless we’ve made a module-level mess, the import behavior
won’t be impacted. It may be enticing, daring us to use it even if it
has weird dependencies. “After all,” says the wicked little voice, “if
we’re really desperate we can just feed it Mocks or @patch our sor‐
rows away. Come on—it’ll be fun.” If there aren’t dependency issues,
the class practically double-dog dares us.

52 | Chapter 5: Surprises

Second, if there’s any kind of serious performance impact hiding in
the __init__ or __new__ methods, the system gets to feel it every
time an object is instantiated. The danger here is that you’ll never
notice during development; your brain can’t discern miliseconds
from microseconds during limited testing. Only when you’re work‐
ing with the class at scale will you be greeted with the surprise of
greatly diminished speed. Even when it doesn’t look like there’s much
work happening, there can be a lot actually taking place.

Let me tell you the story about how I laid the groundwork for a
minor instantiation disaster. I was building the backend of that
reminder system, and we had decided that it would use simple data
transfer objects to shovel data back and forth via XML-RPC. I
thought I would be smart and learn from my post-Java getter-and-
setter nightmare classes, eschewing their bloated, 40-plus-parameter
__init__ methods in favor of something clean and declarative, like
this:

class Calendar(DataObject):
 calendar_id = None
 user_id = None
 label = None
 description = None

Alas, Python’s XML-RPC library only serializes the instance
attributes of an object, not the class attributes, meaning that any
attribute we hadn’t explicitly set on an instance on the backend sim‐
ply wouldn’t exist when it got to the frontend, and vice versa. To
avoid having to clutter up the code with get and getattr calls, we
made the parent DataObject class do some magic in the __new__ to
copy all of the class attributes into instance attributes as the object
was instantiated. To avoid having to create and maintain those over‐
blown __init__ methods, I made DataObject magically sweep up
all its keyword arguments and set the corresponding attributes.

This worked well and saved me a ton of typing. But I was uneasy
about allowing all the keyword arguments to be used to set
attributes in the DataObject instance, so I created a StrictDataOb
ject subclass that would enforce that only expected attributes were
set.

Before long I got worried about one day wanting a DataObject
whose default attributes might have mutable values like lists and dic‐
tionaries, defined on the class in that clean, declarative style. Cau‐

Overeager Code | 53

tion was required to ensure that data wouldn’t leak between objects
in those shared class attributes. Thinking myself very clever indeed,
I created the MutantDataObject, which carefully made instance
copies of mutable class attributes.

Time passed. MutantDataObject became popular for its conve‐
nience and worked its way into a number of our systems. Everyone
was happy until one day when we got a nasty surprise from a new
system we were building: the system was so slow that requests were
hitting our 30-second fcgi timeout, bringing the website to its knees.

As we poked around, we eventually discovered that we were simply
making way too many MutantDataObject instances. One or two
weren’t terrible, but some inefficient logic had us accidentally mak‐
ing and discarding N2 or N3 of them. For our typical data sets, this
absolutely killed the CPU—the higher the load went, the worse each
subsequent request became. We did a little comparative timing anal‐
ysis on a box that wasn’t busy dying, spinning up some minimal
objects with only a few class attributes.

DataObject was kind of mediocre, and StrictDataObject was,
predictably, a little bit slower still. But all the magic in
MutantDataObject blew the timing right through the roof! Don’t
pay too much attention to the numbers in Figure 5-3, as they weren’t
captured on current hardware; instead, focus on their relative mag‐
nitudes.

Fixing the flawed plumbing that led to instantiating so many objects
was off the table due to the time and effort it required, so we resor‐
ted to even darker magic to resolve this crisis, creating a new
DataObject which called upon the eldritch powers of metaclasses to
more efficiently locate and handle mutables in the __new__. The
result was uncomfortably complicated, maybe even Lovecraftian in
its horror, but it did deliver signficant performance results (see
Figure 5-4).

54 | Chapter 5: Surprises

Figure 5-3. Time to instantiate 100,000 objects

Figure 5-4. Time to instantiate 100,000 objects, revisited

Overeager Code | 55

Though we solved the immediate performance problem, we ended
up increasing our technical debt by creating both a complicated sol‐
ution (metaclasses are typically a warning sign) and a maintenance
need to phase out the old, naïve implementations in favor of the
replacement, plus all of the the attendant QA cost associated with
such deeply rooted changes. The victory was pyrrhic at best.

Poisoning Persistent State
Here’s another fun mystery. Let’s say you’ve just finished work on an
awesome feature. And you’ve been disciplined about how you exe‐
cuted: you wrote tests along the way, you made sure there was good
coverage, you made sure to run them before committing, and all the
tests in the parts of the codebase that you touched are passing.
You’re feeling great…until your CI environment starts barking at
you for breaking the build.

So you see if you can reproduce the failure, first rerunning the tests
around your changes (nope, still green), and then running the entire
test suite, which does show failures inside your tests. Huh? What
gives?

What’s likely going on is that some other ill-behaved test is sabotag‐
ing you. Something, somewhere, is doing some monkey-patching—
altering or replacing the contents of a module, class, function, or
other object at runtime—and not cleaning up after itself. The test
that does this might pass, but causes yours to break as a side effect.

When I first grappled with this scenario, the culprit was a coworker’s
creation, the aptly named DuckPuncher (because Python is “duck
typed”):

class DuckPuncher(object):
 def __init__(...): ...
 def setup(...): ...
 def teardown(...): ...
 def punch(...): ...
 def hug(...): ...

 def with_setup(self, func):
 def test_func_wrapper(*args, **kwargs):
 self.setup()
 ret = func(*args, **kwargs)
 self.teardown()
 return ret

56 | Chapter 5: Surprises

 test_func_wrapper = wraps(func)(test_func_wrapper)
 return test_func_wrapper

Tests that used DuckPuncher would inherit from it, define a setup
and teardown that would, respectfully, “punch” (to do the monkey
patch) and “hug” (to undo the monkey patch) the metaphorical
ducks in question, and with_setup would be applied as a decorator
around a method that would execute the test, the idea being that the
actual test would automatically have the setup and teardown happen
around it. Unfortunately, if something fails during the call to the
wrapped method, the teardown never happens, the punched ducks
are never hugged, and now the trap is set. Any other tests that make
use of whatever duck was punched will get a nasty surprise when
they expect to use the real version of whatever functionality was
patched out.

Maybe you’re lucky and this hurts immediately—if a built-in like
open was punched, the test runner (Nose, in my case), will die
immediately because it can’t read the stack trace generated by the
test failure. If you’re unlucky, as in our mystery scenario above, it
may be 30 or 40 directories away in some vastly unrelated code, and
only methodically trying different combinations of tests will locate
the real problem. It’s even more fun when the tests that are breaking
are for code that hasn’t changed in six months or more.

A better, smarter DuckPuncher would use finally to make sure that
no matter what happens during the wrapped function, the teardown
is executed:

class DuckPuncher(object):
 def __init__(...): ...
 def setup(...): ...
 def teardown(...): ...
 def punch(...): ...
 def hug(...): ...

 def with_setup(self, func):
 def test_func_wrapper(*args, **kwargs):
 self.setup()
 try:
 ret = func(*args, **kwargs)
 finally:
 self.teardown()
 return ret

 test_func_wrapper = wraps(func)(test_func_wrapper)
 return test_func_wrapper

Poisoning Persistent State | 57

However, this still relies on someone remembering to hug every
punched duck; if the teardown is omitted, is incomplete, or has its
own exception, the test run has still been poisoned. We will instead
be much happier if we get comfortable with Mock and its patch dec‐
orator and context manager. These mechanisms allow us to seam‐
lessly monkey-patch just the items we need to mock out during the
test, confident that it will restore them as we exit the context of the
test:

from mock import patch

from my_code import MyThing

class TestMyThing(...):

 @patch('__builtin__.open'):
 def test_writes_files(self, mock_open):
 ...

 @patch('my_code.something_it_imported'):
 def test_uses_something_imported(self, mock_thing):
 ...

As an added bonus, using Mock means that we don’t have to rein‐
vent any wheels.

This kind of problem isn’t limited to testing. Consider this example
from the reminder system discussed earlier:

DCT_BRAND_REMINDERS = {
 SITE_X: {
 HOLIDAYS: [Reminder(...), ...],
 OTHER: [Reminder(...), ...],
 CUSTOM: [Reminder(...), ...],
 }, ...
}

...

class BrandWrangler(object):
 ...
 def get_default_reminders(self, brand):
 return DCT_BRAND_REMINDERS.get(brand, {})

In this module, I laid out a dictionary of default reminders for dif‐
ferent flavors of event, configured for each site that the system sup‐
ports. The get_default_reminders method would then fetch the
right set of defaults for a given brand. It went horribly wrong, of
course, when the code that needed these defaults would then stamp

58 | Chapter 5: Surprises

the Reminder instances with things like the user ID or the ID of
whatever event the reminder was associated with, causing more data
to leak between users across different requests.

When you’re being clever about making configuration in code like
this, it’s a bad idea to give callers the original objects. They’re better
off with copies (in this case using deepcopy so that every object in
that subdictionary is fresh and new):

import copy

...

class BrandWrangler(object):
 ...
 def get_default_reminders(self, brand):
 return copy.deepcopy(
 DCT_BRAND_REMINDERS.get(brand, {}))

Any time you’re messing with the contents of a module, or of a class
definition, or of anything else that persists outside the scope of a
function call, you have an opportunity to shoot yourself in the foot.
Proceed with caution when you find yourself writing code like this,
and make good use of logging to verify that your assumptions hold.

Assuming Logging Is Unnecessary
Being the intelligent, attractive, and astute reader that you are, you
may have noticed a bit of a theme emerging around the notion of
logging. This is not coincidence; logging is one of our greatest allies
in the struggle against surprises. It is also something that, for various
reasons, I have been absolutely terrible at.

I’m a big fan of excuses like:

• “This code is too simple to need logging.”
• “The service I’m integrating with will always work.”
• “I’ll add logging later.”

Maybe some of these sound familiar to you?

These excuses are rooted in well-meaning, pure-hearted optimism, a
sincere belief that everything will be okay, that we’re good enough
and smart enough. However, I cannot even begin to count the num‐
ber of times that this starry-eyed laziness has been my undoing.

Assuming Logging Is Unnecessary | 59

The code’s too simple? Baloney—code will pile up, something will
eventually go wrong, and it’ll be hard to diagnose. Integrating with a
third-party service? Your code might be golden, but can you prove
it? And what product owner is going to prioritize the work to add
logging over whatever hot new feature they’re really excited to
launch? The only way you’re adding logging later is when you have
to because something’s gone horribly wrong and you have no idea
what or where.

Having good logging is like having an army of spies arranged strate‐
gically throughout your code, witnesses who can confirm or deny
your understandings and assumptions. It’s not very exciting code; it
doesn’t make you feel like a ninja rockstar genius. But it will save
your butt, and your future self will thank you for being so consider‐
ate and proactive.

Okay, so you’re determined to learn from my failures and be awe‐
some at logging. What should you be thinking about? What differ‐
entiates logging from logging well?

Log at Boundaries
Logging fits naturally at boundaries. That can be when entering or
leaving a method, when branching (if/elif/else) or looping (for,
while), when there might be errors (try/except/finally), or before
and after calling some external service. The type of boundary will
guide your choice of log level; for example, debug is best in branch‐
ing and looping situations, where info makes more sense when
entering or leaving larger blocks. (More on this shortly.)

Log Actions, Motives, and Results
Logging helps you understand the story of your code at runtime.
Don’t just log what you’re doing, but why, and what happened. This
can include actions you’re about to take, decisions made and the
information used to make them, errors and exceptions, and things
like the URL of a service you’re calling, the data you’re sending to it,
and what it returned.

Log Mindfully
It’s not a good idea to just log indiscriminately; a little bit of mind‐
fulness is important.

60 | Chapter 5: Surprises

Unless you have a fancy aggregation tool, like Splunk or Loggly, a
single application (or website) should share a single log file. This
makes it easier to see everything that the application is doing,
through every layer of abstraction. Dependency injection can be
profoundly helpful here, so that even shared code can be provided
with the right log.

Choose an appropriate level when logging messages. Take a moment
to really think about whether a message is for debugging, general
information, a caution, or an error. This will help you to filter the
logged data when you’re sifting through it. Here are some illustrative
suggestions, assuming the standard library’s logging interface:

Debug - for fine details, apply liberally
log.debug("Initializing frobulator with %s",
 frobulation_values)

Info - for broader strokes
log.info("Initiating frobulation!")

Warn - when we're not in trouble yet but
should proceed with caution
log.warn("Using a deprecated frobulator; you're "
 "on your own...")

Error - when something bad has happened
log.error("Unable to frobulate the prognostication "
 "matrix (Klingons?)")

Exception - when an exception has been raised
and we'd like to record the stack trace
log.exception("Unable to frobulate the prognostication "
 "matrix!")

Critical - when a fatal error has happened and
we cannot proceed
log.critical("Goodbye, cruel world!")

But we also have to be careful that we don’t log things we shouldn’t.
In particular, be mindful of unsanitized user input, of users’ person‐
ally identifiable information, and especially health and payment
data, as HIPAA and PCI incidents are one hundred percent No Fun
At All. You might consider wrapping any sensitive data in another
object (with an opaque __str__ and __repr__) so that if it is acci‐
dentally logged, the value is not inappropriately emitted.

Assuming Logging Is Unnecessary | 61

http://bit.ly/1F14fDn
http://bit.ly/1UTrVLw

Assuming Tests Are Unnecessary
The only thing that’s bitten me as badly as forgoing decent logging
has been skimping on writing tests, or skipping them altogether.
This is another place that, as with logging, I have a tendency to
assume that the code is too simple to be wrong, or that I can add
tests later when it’s more convenient. But whenever I say one of
these things to myself, it’s like a dog whistle that summons all man‐
ner of bugs directly and immediately to whatever code isn’t being
tested.

A recent reminder of the importance of testing came as I was inte‐
grating with a third-party service for delivering SMS messages. I had
designed and written all the mechanisms necessary for fulfilling the
industry and governmental regulations for managing user opt-ins,
rate limiting, and record keeping, and somewhere along the way had
come to the conclusion that I didn’t need to test the integration with
the messaging service, because it would be too complicated and
wouldn’t provide much value since I surely had gotten everything
right the first time. This bad assumption turned into weeks of pain‐
ful manual integration testing as each mistake I uncovered had to be
fixed, reviewed, merged, and redeployed into the testing environ‐
ment. Eventually I reached my breaking point, took a day to write
the tests I should have written in the first place, and was amazed by
how quickly my life turned from despair to joy.

Python gives us great power and freedom, but as the wisest scholars
tell us, we must temper these with responsibility:

With great power comes great responsibility.
—Benjamin “Uncle Ben”
Parker

Right now, we’ve got freedom and responsibility. It’s a very groovy
time.

—Austin Powers

As long as our code is syntactically reasonable, Python will cheer‐
fully do its best to execute it, even if that means we’ve forgotten to
return a value, gotten our types mismatched, mixed up a sign in
some tricky math, used the wrong variable or misspelled a variable
name, or committed any number of other common programmer
errors. When we have unit tests, we learn about our errors up front,
as we make them, rather than during integration—or worse, pro‐

62 | Chapter 5: Surprises

duction—where it’s much more expensive to resolve them. As an
added bonus, when your code can be easily tested, it is more likely
to be better structured and thus cleaner and more maintainable.

So go make friends with unittest, Pytest, or Nose, and explore
what the Mock library can do to help you isolate components from
one another. Get comfortable with testing, practice it until it
becomes like a reflex. Be sure to test the failure conditions as well as
the “happy path,” so that you know that when things fail, they fail in
the correct way. And most importantly, factor testing into all your
estimates, but never as a separate line item that can be easily sacri‐
ficed by a product owner or project manager to achieve short-term
gains. Any extra productivity squeezed out in this way during the
initial development is really borrowed from the future with heavy
interest.

Testing now will help prevent weird surprises later.

Assuming Tests Are Unnecessary | 63

CHAPTER 6

Further Resources

Education never ends, Watson. It is a series of lessons
with the greatest for the last.

—Sherlock Holmes

Now that you’ve seen many flavors of mistakes, here are some ideas
for further exploration, so that you can make more interesting mis‐
takes in the future.

Philosophy
PEP-8

The definitive resource for the Python community’s standards
of style. Not everyone likes it, but I enjoy how it enables a com‐
mon language and smoother integration into teams of Python
programmers.

The Zen of Python
The philosophy of what makes Python pythonic, distilled into a
series of epigrams. Start up a Python shell and type import
this. Print out the results, post them above your screen, and
program yourself to dream about them.

The Naming of Ducks
Brandon Rhodes’ PyCon talk about naming things well.

The Little Book of Python Anti-Patterns
A recent compilation of Python anti-patterns and worst
practices.

65

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
http://rhodesmill.org/brandon/talks/
http://docs.quantifiedcode.com/python-anti-patterns/

Getters/Setters/Fuxors
One of the inspirational posts that helped me better understand
Python and properties.

Freedom Languages
An inspirational post about “freedom languages” like Python
and “safety languages” like Java, and the mindsets they enable.

Clean Code: A Handbook of Agile Software Craftsmanship
by Robert C. Martin (Prentice-Hall, 2008)

“Uncle Bob” Martin’s classic text on code smells and how to pro‐
gressively refactor and improve your code for readability and
maintainability. I disagree with the bits about comments and
inline documentation, but everything else is spot-on.

Head First Design Patterns
by Eric Freeman and Elizabeth Robson, with Kathy Sierra and Bert
Bates (O’Reilly, 2004)

Yes, the examples are all in Java, but the way it organically
derives principles of good object-oriented design fundamentally
changed how I thought. There’s a lot here for an eager Pytho‐
nista.

Tools
Python Editors

Links to some editors that may make your life easier as a Python
developer.

Nose
Nose is a unit testing framework that helps make it easy to write
and run unit tests.

Pytest
Pytest is a unit testing framework much like Nose but with
some extra features that make it pretty neat.

Mock
Lightweight mock objects and patching functionality make it
easier to isolate and test your code. I give thanks for this daily.

Pylint
The linter for Python; helps you detect bad style, various coding
errors, and opportunities for refactoring. Consider rigging this

66 | Chapter 6: Further Resources

http://2ndscale.com/rtomayko/2005/getters-setters-fuxors
http://www.journalhome.com/codecraft/9003/
https://wiki.python.org/moin/PythonEditors
https://nose.readthedocs.org/
http://pytest.org/
http://www.voidspace.org.uk/python/mock/
http://www.pylint.org/

up to your source control with a pre-commit hook, or running
it on your code with a continuous integration tool like Jenkins
or Travis CI.

Virtualenv
Virtual environments allow you to work on or deploy multiple
projects in isolation from one another; essential for your sanity.

Virtualenvwrapper
Provides some nice convenience features that make it easier to
spin up, use, and work with virtual environments. Not essential,
but nice.

Conda
A package and environment management system for those
times when pip and virtualenv aren’t enough.

IPython and Jupyter Notebook
IPython is the command-line shell and the kernel of the Jupyter
Notebook, the browser-based Python environment that enables
exploration, experimentation, and knowledge sharing in new
and exciting ways. The Notebook has profoundly changed the
way I work.

Tools | 67

https://virtualenv.pypa.io/
https://virtualenvwrapper.readthedocs.org/
http://conda.pydata.org/
http://ipython.org
http://jupyter.org

About the Author
Mike Pirnat is an Advisory Engineer at social expression leader
American Greetings, where he’s wrangled Python since 2000. He’s
been deeply involved in PCI and security efforts, developer educa‐
tion, and all manner of web development. He is also the cochair of
AG’s annual Hack Day event.

He has spoken at several PyCons, PyOhios, and CodeMashes and
was a cohost and the producer of From Python Import Podcast
before its long slumber began. (Like the Norwegian Blue, it’s only
resting.)

He tweets as @mpirnat and occasionally blogs at mike.pirnat.com.

http://frompythonimportpodcast.com
http://mike.pirnat.com

	Cover
	Programming
	Copyright
	Table of Contents
	Introduction
	Chapter 1. Setup
	Polluting the System Python
	Using the Default REPL

	Chapter 2. Silly Things
	Forgetting to Return a Value
	Misspellings
	Mixing Up Def and Class

	Chapter 3. Style
	Hungarian Notation
	PEP-8 Violations
	Bad Naming
	Inscrutable Lambdas
	Incomprehensible Comprehensions

	Chapter 4. Structure
	Pathological If/Elif Blocks
	Unnecessary Getters and Setters
	Getting Wrapped Up in Decorators
	Breaking the Law of Demeter
	Overusing Private Attributes
	God Objects and God Methods
	Global State

	Chapter 5. Surprises
	Importing Everything
	Overbroadly Silencing Exceptions
	Reinventing the Wheel
	Mutable Keyword Argument Defaults
	Overeager Code
	At Import Time
	At Instantiation Time

	Poisoning Persistent State
	Assuming Logging Is Unnecessary
	Log at Boundaries
	Log Actions, Motives, and Results
	Log Mindfully

	Assuming Tests Are Unnecessary

	Chapter 6. Further Resources
	Philosophy
	Tools

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

